Reducibility and Characterization of Symplectic

نویسنده

  • RUDOLF SCHERER
چکیده

Hamiltonian systems arise in many areas of physics, mechanics, and engineering sciences as well as in pure and applied mathematics. To their symplectic integration certain Runge–Kutta– type methods are profitably applied (see Sanz–Serna and Calvo [10]). In this paper Runge–Kutta and partitioned Runge–Kutta methods are considered. Different features of symmetry are distinguished using reflected and transposed methods. The property of DJ–irreducibility ensures symplectic methods having nonvanishing weights. A characterization of symplectic methods is deduced, from which many attributes of such methods and hints for their construction follow. Order conditions up to order four can be checked easily by simplifying assumptions. For symplectic singly–implicit Runge–Kutta methods the order barrier is shown to be two.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on Certain Higher-dimensional Exponential Sums via the Self-reducibility of the Weil Representation

We describe a new method to bound certain higher-dimensional exponential sums which are associated with tori in symplectic groups over finite fields. Our method is based on the self-reducibility property of the Weil representation. As a result, we obtain a sharp form of the Hecke quantum unique ergodicity theorem for generic linear symplectomorphisms of the 2Ndimensional torus.

متن کامل

On the Darboux Theorem for Weak Symplectic Manifolds

A new tool to study reducibility of a weak symplectic form to a constant one is introduced and used to prove a version of the Darboux theorem more general than previous ones. More precisely, at each point of the considered manifold a Banach space is associated to the symplectic form (dual of the phase space with respect to the symplectic form), and it is shown that the Darboux theorem holds if ...

متن کامل

On Some Characterization of Generalized Representation Wave-Packet Frames Based on Some Dilation Group

In this paper we consider  (extended) metaplectic representation of the  semidirect product  $G_{mathbb{J}}=mathbb{R}^{2d}timesmathbb{J}$  where $mathbb{J}$ is a closed subgroup of $Sp(d,mathbb{R})$, the symplectic group. We will investigate continuous representation frame on $G_{mathbb{J}}$. We also discuss the existence of duals for such frames and give several characterization for them. Fina...

متن کامل

A New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation

In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant lit...

متن کامل

Width-Bounded Reducibility and Binary Search over Complexity Classes

We introduce a notion of width-bounded reducibility. Width-bounded reducibility provides a circuit-based realization of RuzzoSimon-Tompa reducibility [RS-84], and allows us to generalize that notion of reducibility. We show that reductions of simultaneously restricted width and depth provide a characterization of binary search over complexity classes, as introduced by Wagner [Wa-89] and Buss an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994